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Abstract. The aim of this article is to describe an approximation procedure for stiff differential equations pro-
ducing highly oscillating solutions. For the sake of simplicity the presentation is restricted to ordinary differential
equations. The procedure and the general approximation results are presented. Then the general results are applied
to a number of simple explicit systems, for which numerical simulations of the exact and approximate solutions
are performed and compared.
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1. Introduction

Many phenomena in the natural sciences and engineering are described by stiff differential
equations involving coefficients with different orders of magnitude which produce rapidly
varying solutions. Such systems are particularly difficult (or costly) to solve numerically, since
they usually demand a time step based on the smallest oscillations. Their resolution may be
facilitated by the utilization of asymptotic expansions, following the methodology utilized by
H. Poincaré [1] for celestial mechanics.

In this article we are interested in ordinary (finite-dimensional) differential systems that
produce rapidly oscillating solutions; such systems appear for instance in the discretization of
parabolic equations with superposition of waves of different lengths which are all physically
significant. For example, in meteorology, the superposition of long (Rossby) waves and short
(gravity) waves produces oscillations which are not easy to track and to reproduce numerically
and which make predictions more difficult. Oscillations occur in many other areas of science
and engineering; they occur also of course in fluid mechanics, for turbulent flows, but this is a
much more complex phenomenon, which will only be briefly alluded to in this article.

This article is a preliminary report on an ongoing extended project on the analysis and
numerical simulation of certain classes of differential systems displaying oscillations. To
facilitate the presentation, we restrict ourselves to classes of finite-dimensional differential
systems. After describing the analysis and the approximation procedure that we developed, we
state the main theoretical results; we then consider some very simple model systems with two
to nine variables (including a well-known five-variable model of Lorenz [2] in meteorology),
and we show the results of numerical simulations based on our approximation procedure.
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Underlying our work is the concept of renormalized solution of differential equations, as
developed in the article by L. I. Chen, N. Goldenfeld and Y. Oono [3] and in an article of
the fourth author [4] who gave a mathematical setting of the renormalization group method
and proved results conjectured in [3]. Furthermore, a number of extensions and generaliza-
tions will be presented elsewhere. As is well known, many forms of renormalization have
been considered elsewhere, seg.[5,6] and furthermore different aspects in [7,8,9] and in
[10,11,12]. For the development of numerical methods adapted to the direct numerical simula-
tion of rapidly oscillatory differential systems (without utilization of asymptotic expansions),
see [13] and the references therein.

This article is organized as follows: in Section 2 we present the main approximation results;
in Section 3 we present examples and the results of numerical simulations.

2. Description of the main results

We consider a differential system of finite dimension of the type

d 1
oy Au+=Lu+ Bu,u) = f 2.1)
dt I3

Hereu = (ug, uz, ..., uy) is a function fromR, into R?, A = (4;;) is a symmetric positive-

definite matrix of order/. No specific assumption is made on the malfrix= (L;;) of order
d. In the applications belovl will be either a symmetric positive-definite matrix or an anti-
symmetric matrix. We denote by, oo, ..., ps the eigenvalues of.; they can be complex,
but we assume, for the sake of simplicity, tiatan be diagonalized, which of course is the
case if the eigenvalues éfare simple.

The operatoB is a quadratic operator defined by its matiB,), i.e. using the convention
of summation of repeated indices, we have

{B(u,v)}; = Bjiu vy.

Finally, f € R? is supposed to be time-independent for the sake of simplicity, although
we could handle a time-dependent term. The parameter 0 is small comparee.g.to
the eigenvalues ofi and this is known to generate oscillations, in particular wliers
antisymmetric.

We denote by: = u®(¢) the solution of the initial-value problem (2.1) consisting of (2.1)
and the initial condition

u(0) = uo, (2.2)

whereug € R? is given.

Problems of type (2.1)—(2.2), with = 0, commonly occur in the discretization of fluid-
mechanics and thermohydraulics equations in the incompressible case,Rvbatisfies the
orthogonality property

(B(u, v),v) =0, Yu,v e R, (2.3)

The property (2.3) ofB guarantees energy conservation whenl and f vanish and it
guarantees in all cases that the solution= u(r) of (2.1)—(2.2) is defined for all positive
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times. Similarly, equations of type (2.1)—(2.2) withantisymmetric commonly appear in
meteorology, wheré. is connected to the Coriolis force ands equal (or proportional) to the
Rossby number which is small (seeg Pedlovsky [14]). The case whefeis symmetric is
also relevant and will be mentioned later on.

In view of facilitating the numerical simulation of (2.1)—-(2.2) wheris small, we are
interested in approximating = «° for ¢ small; as it will appear, the solution will result from
the superposition of a ‘slow’ solution based on the time scaled a ‘fast’ solution based on
the time scale = t/¢ which involves the matrix /9,

We denote byP the matrix which diagonalizes, i.e.

L =P7LP =diagp. p2. - - pa)-
As is well known, the columns aP consist of the eigenvectoys of L,
Loj=p;p;.

We rewrite (2.1)—(2.2) on the basis of eigenvectors. ofe.

_ 1. i i
d—u—i-AzZ-i——LzZ-i—B(zZ,ﬁ):f, (2.4)
dt €

ii(0) = o, (2.5)

where we have sefi(= &°, u = u®)
i= P u, iio = P tuo, A=PlAP, f=pP1f,
B(-, )= P B(P-,P"). (2.6)

For the sake of simplicity we will first describe the approximation procedure for (2.4)—
(2.5), and it will then be easy to return to (2.1)-(2.2). The first step of our renormalization
procedure which will be developed in detail elsewhere, consists of defining a renormalized
system for (2.1) which reads in the present case

‘L—l{ Aol + Bo(D.T) = o 27
U(0) = io. (2.8)

Note that related systems appear elsewhere under the name of averaged systengs, see
V.I. Arnold [15,16], A Bensoussan, J.L. Lions and G. Papanicolaou [17], and the references
mentioned in the introduction.
In (2.7), the matrixAq is defined by its elements
~ Ajk if Pj = Pk>
Agjr = .
0 otherwise;

in particularA, is diagonal if allp; are distinct. Similarly,fy is defined by its components

. fj if pj =0,
foj = .
0 otherwise;
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finally

{Bo(U, V)}; = Boju Uy Vi,
with

i Bjkl if pj = px + o1,
0jkl — .
’ 0 otherwise.

The analogue of (2.3) does not hold necessarily for (2.7)—(2.8) and the existetige) of
for all time ¢ > 0 is not straightforward; we will assume the existenc&/df) which is easy
to verify in the examples below. .

We now define the approximate solutién(); it reads:

i (1) = e Le {U(r) +eF;3 <§ U(z))} (2.9)
The definition ofF3 is as follows: we write

F(v) = f — B(¥, ) — Av,
and

ezsl:"(efisv) = ﬁl(v) + Fz(s, V),

/S ez“ﬁ(efi"v) do = Fi(v)s + Fs(s, v), (2.10)
0

i.e. bearing in mind the form of and ofel?, F3(s, v) is the part of the left-hand side of (2.10)
which is not a linear function of; this is the nonresonant part in the left-hand side of (2.10);
the resonant part appearshn,

Fi(v) = fo— Aov — Bo(v, v). (2.11)
Note that
i (0) = iig (2.12)

since F3(0, v) = 0 (by (2.10)) and’ (0) = i(0).
Inserting nowiz into Equation (2.4), we can write

d:‘)3 ~=€ 1~—£ ~ —& =€ ~ ~
&JFA& FIIE 4+ BG 7 = f+¢R,, (2.13)
&
and we have

THEOREM 1. On every intervalO, 7], the functionR, = R, (¢) is bounded, independently
ofr ande. )
Then, for the errofié —i':
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THEOREM 2. There exists a constaik; depending of” and on the data, but independent
of ¢, such that

sup |a°(1) — i (1)| < eKr.
+€[0,T]

The proofs of these theorems will appear elsewhere [18]. O

Let us now reinterpret this result in terms of the initial vector functios= «* and of the
initial system (2.1)—(2.2); this only necessitates rewriting the renormalized system (2.7) and
reinterpreting formula (2.9) in the initial basis.

First, settingl = U(r) = PU (), we infer from (2.7)—(2.8) thal/ solves to the following
system

du
¢ AU + BoU. U) = fo. (2.14)
U(0) = uo, (2.15)

whereAy, By, fo are defined as follows:
Ap=PAoP™',  fo=Pfo.  Bo(.)=PBo(P™" P, (2.16)

i.e. componentwise:

Avj= Y. PuPytAysPiPit,  fo= Y PaPyfp,

o, By, 8

ba =g pa =0
{BoU, )} = BoijeU;Vie Boijk = Y PiaPos Bsap Pap Py Puy P
o, By, 8, A 1
pa = pg +py

Then we define the approximatiari = Pi’: the initial system (2.1) is written in the
equivalent form

1
% + ZLu = Fu), (2.17)

where
F(u)=f — Au — B(u, u);

we then set
F(v) = F1(v) + Fa(s, v), f e F(etv)do = F1(v)s + Fi(s, v); (2.18)

namelyFs(s, v) consists of the part of the left-hand side of (2.18) which is not a linear function
of s. Of course, this definition makes sense only if we bear in mind the forh’ofind the
quadratic form ofF.
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Now we set
() = Pi =e /e {U(t) + e F3 (g U(t))} (2.19)

Clearly (2.13) and (2.19) show that
die®
dr
u®(0) = ugp, (2.21)

with

1
+ A + ZLA + B(i® i) = f + R.. (2.20)

R. = PR..

Then, Theorems 1 and 2 are easily reinterpreted in the following form:

THEOREM Z. On every intervalQ, T], the functionR, = R, (¢) is bounded, independently
ofr ande.

THEOREM 2. There exists a constaiki; depending orf” and on the data, but independent
of &, such that

sup [uf() —u®@)| < eKr.
+€[0,T]

Remarkl. We recall that, for Theorems 1, 2, 2, we have assumed thé&t(z) (or U(r))
is defined for allr € [0, T'] (or, more generally, for al > 0). This assumption needs to be
justified for each specific example.

3. Applications

We now apply Theorems’ &nd 2 to a few finite-dimensional systems. In general, in the
numerical examples, our aim is to show how effective the approximatias b i«° is and,

thus, we will compare some (oscillatory) components:ofindz¢. However, as far as the
practical interest of the method is concerned, we have to keep in mindthais computed

by (2.19). The main term i§ (¢) which is a solution of the nonoscillatory Equation (2.14), that
we then multiply by the oscillatory matrixé/¢. In a few cases we have plotted an oscillatory
component of®* and compared it to the corresponding (non-oscillatory) component. of
Numerical integration of the very simple system (2.14) is made by an implicit Crank—Nicolson
scheme.

EXAMPLE 1. In this exampled = 3 and, setting: = (x, y, z), we have that the initial
system (2.1) reads

. 1
x+k1x+g(y+z)+x(y+z)—y2—22=f,

) 1
y—i—)»zy_gx +xy—x*=g, 3.1)

. 1 )
z+A3z—gx+xz—x = h.
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After straightforward calculations, we obtain the analogue of Equation (2.7) (in the initial
basis), namely

X+ 3@+ 2r24+29)X =0,
Y+ 220+ 3h2 4+ 3h9)Y + (201 — 2o — A3)Z = (g — h), (3.2)
Z+ 52— —Ag)Y + §(21 +3ha + 303)Z = —3(g — h).

Remark2. Note that (3.2) is &inear system. O

In the numerical simulations shown below, we have choses= 1072, A, = 1071, A3 =
1, f=0-5g=0-9 h=0-7ands =5x 1073,

We show hereafter in Figure 1 the results of numerical simulations comparing some com-
ponents of the exact solutiori = u = (x, y, z) and of its approximation® = i = (x, y, 7).
More precisely, Figure 1(a) shows the slow made z and the fast mode + z and their
approximationsy — z and y + z. Figure 1(b) shows a zoom of a section of Figure 1(a)
corresponding to + z andy + z, on which the difference between the two curves can be
seen.

Figure 1(a). Comparison of the exact and approxi-Figure 1(b). Zoom of a section of (a).
mate solutions.

EXAMPLE 2. The following system is a slightly different version of Example 1:

. 1
x—i—)»lx—gy—(ax-i-by)z:f,

1
v+ Aoy + gx + (bx —dy)z = g, (3:3)

Z 4 Azz 4+ ax® +dy? = h.
For this example, the renormalized system reads:

X+300+2)X —3(a+dXZ-bYZ =0,
Y+ 10u+2)Y —ia+d)YZ+bXZ =0, (3.4)
Z+x3Z+ 3a+d)(X2+Y?) =h.
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Note that, in this case, the renormalized system is, in general, nonlireaif @ + d # 0 or
b # 0). O

We show hereafter in Figure 2 the results of numerical simulations comparing some compo-
nents of the exact solutio® = u = (x, y, z) and of its approximation® = i = (x, y, 2);

in Figure 2(a) the slow modg z appears in bold line, the fast modex corresponds to the
lighter (highly oscillating) line. Figure 2(b) shows the zoom of a section of Figure 2(a), in
which the difference betweenandz appears clearly. Note also the small oscillationg of
which have been averagedinFigure 2(c) shows the superpositionxfX andY, whereX

andY are two nonoscillatory components of the renormalized solutios (X, Y, Z). Here,

the approximationsg and y of x, y satisfy the relationst = cogt/¢)X + sin(¢/¢)Y and

y = —sin(t/e) X 4+ cogt/e)Y. We did not plot herey, y andx, because of the slight phase
differences which would make the figure too dark.

w um m

Figure 2(a). Comparison of the exact and approxi-Figure 2(b). Zoom of a section of (a).

Mlllmllllllm h!m
W H! \’

|

nlmmn!tmuuuwumuu\llluuuuu i

il I'H i

Figure 2(c). Comparison ofc, X andY.

For the numerical simulations shown below, we have chdser= 1072, A, = 2 x
102, 43=102, f=2 ¢g=3, h=4,a=1 b=2,d=3ande =102
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EXAMPLE 3. This is a five-equations system proposed by E. Lorenz [2] for meteorology.

We change notations and set= (U, V, W, X, Z) and replacd/ by (U*, V*, W*, X*, Z*).

The initial system reads:

U+rU+VW—-bVZ=0,

V+aV—2UW+2bUZ=F,
W+ mW+UV =0,

X+2X+21Z=0,
Z+iZ-x-bUV =0

(3.5)

Our analysis leads to the following renormalized system:

U* 4+ MU* + V*W* =0,
V* 4 A V* —2U*W* = F,
§ W+ W+ U*V* =0,
X* + AX* =0,

Z* + A Z* = 0.

061

04r-

02f : -

02|

-04f

ol JEUROUIURURIOE SIOURROPOPIOTN w510

(3.6)

i i L : L H L L h
225 23 235 24 245 25 255 26 265
T

Figure 3(a). Comparison of the exact and approxi-Figure 3(b). Zoom of a section of (a).

mate solutions.

In the numerical simulations shown below we have chdsea X, :_1@2, b=1F=
1, ¢ = 1072. Figure 3(a) show$/, V, W, X and their approximations/, V, W, X. Figure
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3(b) shows a zoom of part of Figure 3(a) f&r X andV, V. The differences betweev and
V are not noticeable; those betweE¥rand X are apparent.

T

L i L L L L L L L L H
002 004 006 008 01 012 014 016 018 02 022
T

Figure 4(a). Comparison of the exact and approximate solutions.

EXAMPLE 4. We consider now a nine-equation model. Wewset (uy, ..., ug), and write
fori=1,4,7 (ugr9=ue,a=1,...,9):

. 1
i + (W2 g — uinive) + vu; + g(ui+1 +ui2) = F,
. ) 1
Ui+ (WU o — Uiyaltiy2) + CVUi11 — JUi = 0, (3.7)
tiro + U2y — Uipaltiy2) + CVUi — S = 0.
For this example we have

L, 0 O
L: 0 L] O . P:
0 0 L,

P 0 O A; 0 O
0 P[ 0 , A= 0 AI 0 )
0 O P] 0 0 AI

R
|

0 11 0 V2 V2
L[Z -100 y P1: 1 1 —1 ,

-100 -1 i —i

0 1/2 1/2 v 0 0
pt=l1 i —-i |, A=]|0vc 0 |,

-1 i —i 0 0 ve
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the eigenvalues of; being, Q +iv/2. The renormalized system which is linear reads, for
i=1,4,7:

Ui+ 3v(1+0U; =0,
Ui + 391+ 30 Uis1 + 301 = )Uiy2 = 0, (3.8)
Uiz + 2L = U1 + 2v(1+30) U1 = 0.

Figure 4 shows the superposition of = «{ andu; = uj and ofu; — uz = u$ — uj with
il — i3 = it — it the computations were made foe= 1072, F =1, c=1, ¢ =5x 1073

The analytical computations becoming somehow involved, they have been performed in
this example with the help of the Maple program.

EXAMPLE 5. We conclude with an example for whi¢his symmetric semidefinite positive,
while L was always antisymmetric in the previous examples.

The following example was introduced in [19] as a simplified model for the study of
multilevel numerical methods adapted to the simulation of turbulence ; in the comparison with
these algorithms (of the nonlinear Galerkin typge)epresents the large scale component of
the velocity and; represents its small scale component. Note the large ‘viscosity’ coefficient
for z equal to ¥, which produces the small-scale vortices (in agreement with the conventional
theory of turbulence, se=q.[20], [21]).

With u = (y, z), this system reads

y+y+yz=f
1 (3.9)

i+-z— )y =g
&

Using the results of Section 2, we find the following renormalized system:

Y+Y=F

. (3.10)
Z=0.
Then, in the present case the approximate solution can be calculated analytically and it reads

(o = (o, 20)):

V@O = f+Go—f) e’ +elf + (o— f) e/ - 1),

B (3.11)
) =e" lzo—elf +(o— e PP —eg]|+eg+elf +(o— e’
Theorems 1 and 2 apply for all positive times. The expression abowe of (y©, z°) shows
the superposition of the large structures evolving on the time scaie of small structures
evolving on the time scalesandz /.
A straightforward computation gives the system of equations satisfiaél by(y*, z°):

YO+ I+ 378 = f + eRi(D),
R BT . (3.12)
z8 4+ gz — () =g+ eR5(1),
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where
Ri(t) = zo(e* =) (f +Y(1)zo e ') (3.13)
+Y(O)(Y (1) +g)(L—e/*) (L+ ezo(e7'/* — 1)),
whereY (1) = f + (yo— f)e ', and
Rs() =1 —e"")[2Y (1) (f = Y (1) + 2Y (1)°z0 + eY (1)°25(L — e /)] . (3.14)

Note thaty®, z° are bounded for all > 0. Moreover,R}(t) and R5(¢) are bounded for all
t > 0, independently of, i.e.

[ supso (IR5(1) + R5(1)1) < C(f. 8. 20, Yo

o i (3.15)
SUQ>0 (|y6| + |Z£|) < C, SUQ>1/2 |Ze|(t) < Ce.

Estimates fou® — u®
We setp® = y* — y* andg® = z° — z°. Then(p?, ¢°) satisfies:
p'e +ps +paqs +zaps +}-;aqs — —8Re,
o , ! (3.16)
q° +2q9° — (p°)°+ 2y°p* = —¢Ry,

with the initial conditionsp®(0) = 0, ¢°(0) = 0. Multiplying the first equation by* and the
second equation ky?, we obtain after adding:

1 d 1 =& £ =€ e €& £ £ £ £
Sq [(P5)? + (@°)?] + (pH)* + " @)+ (p*)* + 35 p°q° = —e [p°RS + 4" R,

which leads to

1d £\2 £\2 £\2 1 £\2

2dt[(p) + @)%+ (P9 + =)

1 _ _
<3 [(zf)z + g(q‘?)z] + 1Z51(p)2 + k & (59)%(p*)? + ke2(R5)? + ke3(R5)?.

Therefore, taking into account (3.15), we deduce that

d 1

o [(P)% + (@°)?] + (p)* + g(q“j)2 <k(pHPi+ie? for t>0,

and

NI

’

d 1
a [(Pg)2 + (qe)Z] + (P + g(qe)2 <ke(pH)?+re? for t>

wherek is a constant depending on the data, but noteoilence, there exists atpy =
go(f. 8. Yo, z0) = 5= such that ife < eo, then

% [(p*’")2 + (qa)z] <k(PH?+ke? for t>0
(3.17)
(P2 + @]+ 3[(p)2+ L@)?] <we? for 1>

NIl

@l
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Let T¢ be the first time such thap®|? + |¢°|> = k&?; we have forr < T*:
1"+ lg° (O < ket
HenceT* > 1 and we have

PP+ 1O < 2ce?, for 0< 1<

NI

Now starting at = % we use the Gronwall lemma and obtain

PFOP +1g* O < 1p° (3) P+ 1g° (3) 17 +xe® < 3ke?, for ¢ >

NI

Hence

(P)*+ (¢°)* < 3ke?, Vit >0. (3.18)
We also deduce fron.16), and (3.18) that

d e\2 1 £\2 £\2 N4 3 3

E(CI ) +E(CI )* < ke(p) +re(p®)” +ke” < ke,
so that, by applying again the Gronwall lemma, we find the following estimatg*for

(°)* <«ke, V>0 (3.19)

We conclude that

Supsoly* — ¥l < ke,

<
(3.20)
SUPsol 2 — 2 < k&%

4. Concluding remarks

In this article we have presented some preliminary results concerning an averaging (smooth-
ing) procedure which is being developed by us. We have not been able to include here the
details of the analysis and the proof of the results which are lengthy and hinge on functional-
analysis tools; this will appear in subsequent articles, as well as the application to larger
systems corresponding, for instance, to the spatial discretization of partial differential equa-
tions.

In all the examples we have been able to replace the integration of a very oscillatory system
requiring a small time step by that of a nonoscillatory one allowing a much larger time step and
we were nevertheless able to recover almost all the details of the oscillations. Of course, the
systems considered are extremely simple, but we are optimistic and believe that the method
will still be effective for much larger systems. There is also the intringuing question of the
approximation, sometimes, of an oscillatory nonlinear system by a linear one which needs to
be investigated.
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